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a b s t r a c t

The study investigated the use of aerial multispectral imagery and ground-based hyperspectral data for
the discrimination of different crop types and timely detection of cotton plants over large areas. Airborne
multispectral imagery and ground-based spectral reflectance data were acquired at the same time over
three large agricultural fields in Burleson Co., Texas during the 2010 growing season. The discrimination
accuracy of aerial- and ground-based data was examined individually; then a multi-sensor data fusion
technique was applied on both datasets in order to improve the accuracy of discrimination. The individ-
ual classification accuracy of data taken with the aerial- and ground-based sensors were 90% and 93.3%,
respectively. In comparison, the accuracy of discriminating crop types with fused data was 100% in the
calibration and only 3.33% misclassification in the cross-validation. These results suggest that data fusion
techniques could greatly enhance our ability to detect cotton from other plants.

Published by Elsevier B.V.
1. Introduction

During the past decade, hyperspectral and multispectral sensors
have shown considerable promise as tools for efficiently monitor-
ing plants in localized areas of fields. Spectral reflectance proper-
ties based on the absorption of light at specific wavelengths are
associated with specific plant characteristics. For healthy crops,
spectral reflectance in the visible wavelengths (400–700 nm) is
low because of the high absorption of light energy by chlorophyll.
In contrast, reflectance in the near infrared (NIR) wavelengths
(700–1300 nm) is high because of the multiple scattering of light
by different leaf tissues (Taiz and Zeiger, 2006). Reflectance in
the green region is also higher than that in the blue and red regions
of the spectrum. Stress or damage to crops can cause a decrease in
chlorophyll content and change internal leaf structure (Curran,
1989). As a result, the reflectance in the visible region will de-
crease. Several studies have used hyperspectral measurements in
support of crop management, such as crop type identification,
plant nutrition deficiency assessment, crop stress or damage, yield
estimation and growth status evaluation (Thenkabail, 2002; Zhao
et al., 2005a,b; Plant et al., 2000; Muhammed, 2005; and Koger
et al., 2003). Thenkabail et al. (2000) used narrow-band spectral
data between 350 and 1050 nm to determine appropriate bands
for characterizing biophysical variables of various crops, including
corn, soybean and cotton. Gray et al. (2009) analyzed hyperspectral
reflectance data with a variety of methods for differentiating soy-
bean, soil, and six weed species commonly found in Mississippi
agricultural fields.

Remote sensors have been fitted for different platforms, includ-
ing ground-based, airborne, and spaceborne platforms, for various
applications. In particular, airborne remote sensing technologies
have made tremendous improvements recently and are now being
used in precision agricultural applications (Lan et al., 2007a,b;
Huang et al., 2008; Huang et al., 2010; Lan et al., 2009). Airborne
multispectral techniques are much less expensive and less data-
intensive than hyperspectral imaging systems and can rapidly pro-
vide continuous remotely-sensed data over a large field or region.
Yang et al. (2006) examined airborne color-infrared digital imagery
for assessing the effectiveness of different herbicide treatments for
cotton regrowth control. Goel et al. (2003) used airborne hyper-
spectral data to estimate crop biophysical parameters within corn
plots which were treated with different rate combinations of her-
bicide and nitrogen fertilizer. The incorporation of spectral reflec-
tance data from additional wavelength regions resulted in a
better regression model. As a result, more than 90% of the variation
could be explained for many crop biophysical variables. Although
hyperspectral imagery can provide hundreds of wavebands, it is
expensive and requires significant efforts to properly process an
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image. Consequently, the use of hyperspectral imagery as a man-
agement-decision aide may not be a viable tool for all farmers. Fur-
thermore, both satellite and aerial imagery can be compromised by
cloud cover. In contrast, ground-based hand-held remote sensing
instruments are not strongly influenced by environmental condi-
tions but measurements are labor-intensive and time-consuming.

Considering the advantages of both airborne multispectral
imagery and ground-based remote sensing data, multi-sensor data
fusion techniques have recently been developed to combine data
from multiple sensors or sources. This technique is used to provide
inference that may not be possible or may not be good from a sin-
gle sensor or source (Hall and Llinas, 1997; Hall and McMullen,
2004). However, few studies have incorporated multi-sensor data
fusion for assessment of crop conditions. Bravo et al. (2004) com-
bined hyperspectral reflectance data between 450 nm and
900 nm and fluorescence imaging to detect and recognize foliar
disease in wheat. Kaleita (2003) developed a methodology for
mapping surface soil moisture content across an agricultural field
from optical remote sensing data and limited ground sampling
data. The objectives of this work were to discriminate crop types
using ground-based hyperspectral data, airborne multispectral
imagery, and fused data from the ground-based and airborne spec-
tral measurements.
2. Materials and methods

2.1. Study area

Ground-based remotely-sensed data were collected from agri-
cultural fields in Burleson Co., TX on multiple dates throughout
the 2010 growing season. Conventional planting and management
practices for the fields were used. A total of ten sampling locations
were randomly marked within each field with color flags. Airborne
multispectral imagery of the study area was also acquired at the
same time on two sampling dates (June 17 and August 11). How-
ever, images taken in June were compromised by cloud cover.
Thus, only the imagery taken in August was used for data fusion
analysis. The imagery covered three fields: cotton (30o3402.5200N,
96o28041.7700W); corn (30o33034.2700N, 96�27051.700W); and soy-
bean (30�3307.5300N, 96�27014.2700W).
2.2. Data collection

2.2.1. Airborne multispectral image
The airborne imaging system described in Yang (2010) was

used to capture aerial images in this study. The system consists
of four high-resolution charge-coupled device (CCD) digital cam-
eras and a ruggedized PC equipped with a frame grabber and image
acquisition software. The cameras are sensitive in the 400–
1000 nm spectral range and provide 2048 � 2048 active pixels
with 12-bit data depth. The four cameras are equipped with blue
(430–470 nm), green (530–570 nm), red (630–670 nm), and near-
infrared (810–850 nm) band pass interference filters, respectively.

The multispectral images were acquired under clear sky condi-
tion and during solar noon time on August 11, 2010 when crops
were in their late reproductive stage of development. Each four-
band image was georeferenced to the Universal Transverse Merca-
tor (UTM), World Geodetic Survey (WGS 84), Zone 14, coordinate
system based on ground control points around the field located
with a GPS unit. The pixel size of all images was resampled to
1 m, and the total root mean square error (RMSE) was less than
1 m. All the data processing and analyses were performed in the
Environment for Visualizing Images (ENVI) software package (Ver-
sion 4.5, ITT Visual Information Solution, www.ittvis.com). Since
the objective of this study was to evaluate the relationship be-
tween imagery data and ground-based reflectance data, the raw
digital numbers of the image were converted into reflectance val-
ues. For radiometric calibration of the imagery, two 8 m � 8 m tar-
paulins with different reflectance characteristics were placed near
the fields during image acquisition. The actual reflectance values
from the tarpaulins were measured using the ASD FieldSpec�

Handheld spectroradiometer (VNIR; 325–1075 nm, 512-channel,
and 1.6-nm sampling interval; Analytical Spectral Devices, Inc.,
Boulder, CO). The original multispectral images were converted
to reflectance images based on the digital values of pixels of the
tarpaulins and the reflectance data from the spectroradiometer.

2.2.2. Ground-based data collection
Canopy surface reflectance spectra were measured using the

spectroradiometer. The instrument optimization and white refer-
ence measurements were performed prior to taking measurements
(Castro-Esau et al., 2006). Reflectance was calculated as the ratio
between the reflected radiation from the canopy and the incident
energy on the white reference panel (BaSO4). The spectroradiome-
ter was adjusted to 10 scans per dark current and the integration
time was set at 217 ms. The coordinates of sampling locations were
recorded with an eXplorist XL� GPS unit (Magellan, Santa Clara,
CA) and were used to match aerial and ground pixel data. The
spectroradiometer was held approximately 0.3 m above and with
a nadir-looking view of the plant canopies. Ten readings were ta-
ken and averaged to one value to represent the mean reflectance
spectrum of the sampling area. The white reference was taken at
the first and sixth locations or whenever the light condition chan-
ged. To determine whether the hyperspectral sensor performed
better than the airborne multispectral sensor for crop variation
detection, the reflectance data from the spectroradiometer was
simulated to broadband data according to the bandwidth of the
multispectral imaging sensor. The discrete 1.6-nm narrow-band
reflectance data measured by the spectroradiometer were aver-
aged into four broad spectral bands (430–470 nm, 530–570 nm,
630–670 nm, and 810–850 nm) of the airborne multispectral imag-
ing sensor to obtain the simulated broad-band reflectance data at
ground level. Due to noise in the 325–399 nm region, only the
reflectance values between 400 nm and 1075 nm were used.

2.3. Data association

A shape file (vector data storage format) was created using the
spatial coordinates of ten ground sampling locations within each
field. The regions of interest were visually selected for cotton, corn,
and soybean and the subset images of the regions of interest were
exported into ArcGIS 9.3.1 (ESRI, Redlands, CA, USA). The ground
sampling points were overlaid on the image. The values of the four
spectral bands for the image pixels were geo-collocated with
ground sampling points and were extracted for further analysis.

2.4. Data analysis

2.4.1. Principal component analysis
Principal component analysis (PCA) is a multivariate technique

used as a tool for reducing high dimensional data (512-channel
spectroradiometer data in this study). The information content
contained in original variables is projected onto a smaller number
of principal components (PCs) which are linear combinations of
those variables. The process of PCA returns scores which are the
estimated values for each principal component and PCA loadings.
The PCA score plot can present the clustering of the data and the
PCA loading plot can be used to investigate the contribution of each
variable. PCA was performed using PRINCOMP procedure in SAS
(SAS Institute, Cary, NC) to create a new principal component for
each wavelength variable in the original data. Two principal com-
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ponents, PC1 and PC2, explain about 95% of the variance of the ori-
ginal variables and were used for classification.
2.4.2. Data fusion
Discriminant analyses were applied on several datasets: (1) de-

rived reflectance values from four bands of multispectral imagery;
(2) simulated broad-band reflectance values from the Fieldspec
spectroradiometer; (3) principal components derived from reflec-
tance values taken with Fieldspec spectroradiometer at 1.6-nm
sampling interval; (4) combined dataset 1 and 2; (5) principal com-
ponents derived from dataset 4; and (6) principal components de-
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Fig. 1. Reflectance spectra of cotton, corn and soybean plants were mea
rived from the combination of dataset 1 and Fieldspec reflectance
data at 1.6-nm bandwidth.

The DISCRIM procedure in SAS was applied on the aforemen-
tioned datasets for classification. The parameters being used to de-
velop discriminant function were pooled covariance matrix and
prior probability of the groups. The DISCRIM procedure divided
the data into two subsets. One subset was used to develop a cali-
bration model and the other to validate the model. ‘‘One data
out’’ method was used for cross-validation in this procedure. The
output matrix provided the misclassification rate of calibration
and cross-validation.
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sured with a Fieldspec spectroradiometer at 10 sampling locations.



0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900 1000
Wavelength (nm)

R
ef

le
ct

an
ce

cotton
corn
soybean

Fig. 2. The mean reflectance spectra of three crop types taken with a fieldspec
spectroradiometer.
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3. Results and discussion

3.1. Comparison of cotton, corn and soybean spectra

The ten reflectance spectra of cotton, corn and soybean plants
are plotted in Fig. 1. The spectra for cotton plants had the shape
of a typical spectral curve for healthy plants, which means that
canopies absorbed most blue and red light, reflected some green
light (10–20%) and most near infrared light (60–80%). The
reflectance spectra showed differences, especially in the NIR
region, among ten sampling locations within each field. There-
fore, the reflectance spectra of individual plants even varied
within a field.

Fig. 2 gives the average reflectance spectra of cotton, corn, and
soybean plants from three fields. It is obvious that these spectra
differed in both the visible and NIR regions. In the late growth
stage, the senescent corn and soybean plants reflected more visible
light but less NIR light.
Table 1
Summary of principal component analysis.

Data source No. of PCs Explained variation (%)

Fieldspec (1.6 nm) PC1 70.8
PC1, PC2 95.1

1.6 nm Fieldspec + image PC1 70.8
PC1, PC2 95.1

Simulated Fieldspec + image PC1 77.4
PC1, PC2 94.2

Table 2
Summary of misclassification matrices obtained from the DISCRIM procedure.

Data source Dataset

Image Four bands
Fieldspec (simulated broad band) Four bands
Fieldspec (simulated broad band) + image
PCA (Fieldspec) PC1

PC1, PC2

PCA (1.6 nm Fieldspec + image) PC1
PC1, PC2

PCA (simulated Fieldspec + image) PC1
PC1, PC2
3.2. Data fusion

Principal component analysis was performed on three datasets
to reduce the dimensionality of the datasets. Table 1 shows that
the first PCs explained about 95% of the variation for the datasets.
Only the first two PCs, PC1 and PC2, were used for discrimination
analysis.

The classification results are reported in Table 2. The classifica-
tion performance was evaluated by the misclassification rate in
both the calibration and cross-validation steps in the DISCRIM pro-
cedure. Using the reflectance values derived from imagery alone,
the classification accuracy was 90% in both the calibration and
cross-validation steps. With simulated Fieldspec broad-band
reflectance values, the classification accuracy increased in the cal-
ibration (93.3%) but decreased in the cross-validation step (86.7%).
When using a combination of these two datasets, there was only a
3.3% misclassification rate in the cross-validation step and differ-
ent crop types were distinguished from each other with 100% accu-
racy. When using the principal components from the original
datasets, the classification accuracy with fused data was higher
than for the reflectance values derived from the imagery and the
reflectance values taken by Fieldspec alone.

4. Conclusions

In this study, both ground-based handheld spectroradiometer
data and airborne imagery were used to discriminate cotton from
other crops. Discriminant analyses were performed on six datasets
which were based on airborne multispectral imagery, ground-
based spectroradiometer data, and fused data from the airborne
and ground-based spectral measurements. The fused dataset per-
formed better in discriminating crop types than did the datasets
using a single sensor alone. The overall results indicate the poten-
tial of fusion of remotely-sensed data from multiple sensors as an
effective tool for detecting cotton from other crops. The method
may be extended to the fusion of other types of data, such as imag-
ery data, ultrasonic crop height sensor data, and soil moisture sen-
sor data.

Disclaimer
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Department of Agriculture. USDA is an equal opportunity provider
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